If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10t^2+2t-48=0
a = 10; b = 2; c = -48;
Δ = b2-4ac
Δ = 22-4·10·(-48)
Δ = 1924
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1924}=\sqrt{4*481}=\sqrt{4}*\sqrt{481}=2\sqrt{481}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-2\sqrt{481}}{2*10}=\frac{-2-2\sqrt{481}}{20} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+2\sqrt{481}}{2*10}=\frac{-2+2\sqrt{481}}{20} $
| 3(4x-3)=9 | | y/5+9.3=-3.2 | | 30/360=x/28 | | 16-2x=5x-+9 | | 7(n+3)=7 | | 5x-(-4.4)=-6 | | 16=-3(x-3)+4(x-1) | | 35-v=207 | | x2-5x+72=0 | | 19x+-4=110 | | 0=-0.2x^2+2x | | 2x+3(x-2)=30+x-2-x+2 | | 1/2x+10=3/2+4 | | 24-10x=12-2x | | 13=a-14/2 | | -7(4y-1)+15y=-6 | | -65=5n | | 9/y+4=8/y-9 | | 2(3x-2)=15 | | 22x-5=105 | | 3/w=8/w-1/w | | 9x-4=7×2 | | 3(x-4)+7x=3x-12+7x | | 2x^2+(14/5)x-228=0 | | (10x-10)+56=55=180 | | 13=(w-14)÷2 | | 7a-0.5+7=5a+2.3 | | x2-10=x2-98 | | 4/5+7/27=s/45 | | -0.0035x+35=59 | | 15(x+3)=2x(12) | | -2x+98=88 |